数学
验证引用
虽然已尽一切努力遵循引用风格规则,但可能会有一些差异。如果您有任何问题,请参考相应的样式手册或其他资料。
选择引用格式
反馈
修正?更新?遗漏?让我们知道如果你有建议来改进这篇文章(需要登录)。
谢谢您的反馈

我们的编辑将审阅你所提交的内容,并决定是否修改文章。

打印
验证引用
虽然已尽一切努力遵循引用风格规则,但可能会有一些差异。如果您有任何问题,请参考相应的样式手册或其他资料。
选择引用格式
反馈
修正?更新?遗漏?让我们知道如果你有建议来改进这篇文章(需要登录)。
谢谢您的反馈

我们的编辑将审阅你所提交的内容,并决定是否修改文章。

,在数学方程的解,通常用数字或代数公式表示。

在9世纪,阿拉伯作家通常称一个数的相等因子之一jadhr(“根”),和他们的中世纪的欧洲译者使用了拉丁词基数(由此衍生出形容词激进的).如果一个是积极的实数而且n一个正整数,存在一个唯一的正实数x这样xn一个.这个数字(本金)n的根一个是写n的平方根一个一个1 /n.整数n称为根结点的索引。为n= 2时,根称为the平方根并且被写成的平方根一个.根3.的平方根一个叫做立方根一个.如果一个是负的n奇数是唯一的负数吗n的根一个被称为本金。例如,-27的主立方根是-3。

如果一个整数(正整数)有一个有理数nroot-i.e。,可以写成公分式,那么这个根必须是整数。因此,5没有有理数的平方根,因为22小于5和32大于5。完全n复数满足方程xn= 1,它们被称为复数n团结的根源。的正多边形n边被刻在以原点为中心的单位圆内,因此一个顶点位于圆的正半部分x-轴,到顶点的半径是表示的向量n复杂的n团结的根源。如果根向量与向量正方向的夹角最小x-axis用希腊字母omega表示,ω, ω, ω23.,…,ωn= 1构成所有的n团结的根源。例如ω =−1/2+的平方根−3/22=−1/2的平方根−3/2, ω3.= 1都是单位的立方根。任何根,用希腊字母表示,ε,具有ε, ε2,, εn= 1付出全部n统一的根称为原根。显然,找到的问题n单位的根等价于一个正多边形的刻划问题n围成一个圈。对于每个整数n,n的根团结可以用有理数的形式通过有理数运算和根号来确定;但它们可以用尺子和圆规来构造(即,根据算术和平方根的普通运算来确定),只有在n是2形式的不同质数的乘积吗h+ 1,或者2k乘以这样的乘积,或者是2的形式k.如果一个是一个复数不是0,是方程xn一个正好有n根,和所有的n的根一个这些根的乘积有吗n团结的根源。

这个词从方程中延续下来了吗xn一个对所有多项式方程。这样,就得到了方程的解fx) =一个0xn+一个1xn−1+…+一个n−1x+一个n= 0,有一个0≠0,称为方程的根。如果系数在复场中,则方程为nTh度正好是n(不一定是不同的)复根。如果系数是实数n奇数,有实根。但是方程的系数场中并不总是有根。因此,x2−5 = 0没有有理根,尽管它的系数(1和-5)是有理数。

更一般地说,是这个术语可以应用于满足任何给定方程的任何数,无论是否是多项式方程。因此π是方程的根xsin (x) = 0。

这篇文章最近被修订和更新威廉·l·霍施